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Abstract
The Langevin equation for the biased random hopping of particles onto
unoccupied sites of a lattice is obtained from the master equation for finite
systems by invoking a limit theorem due to Kurtz. For a weakly asymmetric
process with diffusive scaling, the continuum limit of this equation yields a
deterministic equation that is equivalent to Burgers’ equation. The stochastic
equation for the leading lattice corrections is derived and the approach to the
continuum limit is illustrated with simulations.

PACS numbers: 02.50.−r, 05.40.−a, 47.40.Nm

Driven lattice gases are used to model physical phenomena in a variety of settings [1–5].
The dynamics of such lattice gases are determined by transition rules for site occupation
numbers that are expressed in terms of the occupancies of neighbouring sites at the preceding
time step. This provides the basis for a multiscale approach to nonequilibrium systems in
that microscopic fluctuations are incorporated within stochastic transition rules of a master
equation, while a continuum equation of motion, derived from this master equation, describes
the macroscopic evolution of the coarse-grained system. One of the central issues in such
studies is the nature and strength of the fluctuations as the system is coarse-grained.

In this letter, a general procedure is described for deriving exact equations of motion for
driven lattice gases from their master equations. We use this method to obtain the Langevin
equation for the asymmetric exclusion process, i.e. the biased random hopping of particles onto
unoccupied sites of a lattice. The continuum limit of this Langevin equation is a deterministic
equation that is equivalent to Burgers’ equation, while the leading lattice corrections account
for the discrepancies between solutions to Burgers’ equation and simulations on finite lattices.
Although the connection between the asymmetric exclusion process and Burgers’ equation is
well known [6–11], our approach provides an exact analytic expression for the fluctuations in
the lattice and coarse-grained systems as well as a framework for calculating the stochastic
corrections to the continuum limit.

Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= ∂2u

∂x2
(1)

is the simplest equation that incorporates the competing effects of a convective nonlinearity
and ordinary linear diffusion [12, 13]. This equation has been used to study the development of
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turbulence and the propagation of disturbances, including shock waves [14]. Stochastic forms
of Burgers’ equation have been proposed for randomly stirred fluids [15], surface growth [16],
traffic flow [17, 18], population dynamics [19] and cardiac dynamics [20].

We consider the asymmetric exclusion process on a one-dimensional lattice [6–11] whose
sites i have occupation numbers ni that indicate whether the site is occupied (ni = 1) or
unoccupied (ni = 0). Every configuration N of this lattice is specified completely by an array
of all the ni : N = {n1, n2, . . .}. The probability P(N, τ ) of finding configuration N at time τ

is a solution of the master equation [21],

∂P

∂τ
=

∑
r

[W(N − r; r)P (N − r, τ ) − W(N; r)P (N, τ )] (2)

where W(N; r) is the transition rate from N to N + r, and r = {r1, r2, . . .} is the array of all
site jump lengths ri .

The ‘particles’ on our lattice hop to a nearest neighbour site with probabilities per unit
time p+ to the right and p− = 1 − p+ to the left, but the move is allowed only if the target site
is unoccupied. Thus, the total transition rate is the sum of transition rates W+ to the right and
W− to the left,

W±(N; r) = p±
∑

i


ni(1 − ni±1)δ(ri ,−1)δ(ri±1, 1)

∏
j �=i,i±1

δ(rj , 0)


 (3)

where δ(i, j) is the Kronecker delta and the summation extends over all lattice sites.
The equation of motion for this lattice gas is obtained by first performing a Kramers–

Moyal expansion [21–23] of the master equation. This requires expanding the first term on the
right-hand side of (2), which relies on two criteria [21]. The first is that W(N; r) is a sharply
peaked function of r in that there is a δ > 0 such that W(N; r) ≈ 0 for |r| > δ. This ‘small
jump’ condition is satisfied by our rules because the difference in successive configurations
is at most unity on two nearest neighbour sites. The second condition is that W(N; r) is a
slowing-varying function of N, i.e. W(N + �N; r) ≈ W(N; r) for |�N| < δ. Since ni = 0 or
ni = 1, changing an occupation number in (3) by one unit may change the transition rate of
processes involving that site discontinuously, in violation of this condition. To alleviate this
problem, we replace the unit jumps in (3) with rescaled jumps �−1, where � is a ‘largeness’
parameter that controls the magnitude of the intrinsic fluctuations. We also transform the
time according to τ → τ/� to preserve the original transition rate. The transformed master
equation is

∂P

∂τ
=

∫
[W̃(N − r; r)P (N − r, τ ) − W̃ (N; r)P (N, τ )] dr (4)

with the left and right transition rates W̃± given by

W̃±(N; r) = p±�
∑

i


ni(1 − ni±1)δ

(
ri +

1

�

)
δ

(
ri±1 − 1

�

) ∏
j �=i,i±1

δ(rj )


 (5)

in which δ(x) is the Dirac δ-function.
The central quantities in the expansion of the master equation are the moments

K
(1)
i (N) =

∫
riW̃ (N; r) dr ∼ O(1) (6)

K
(2)
ij (N) =

∫
rirj W̃ (N; r) dr ∼ O(�−1) (7)
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Table 1. The moments K
(1)
i and K

(2)
ij defined in (10) and (11) for each configuration {ni−1 , ni , ni+1}

of a site i and its nearest neighbour sites i ± 1.

{ni−1, ni , ni+1} K
(1)
i K

(2)
ij

{0, 0, 0} 0 0
{1, 0, 0} p+ p+(δij − δi−1,j )

{0, 1, 0} −1 p−(δij − δi−1,j ) + p+(δij − δi+1,j )

{0, 0, 1} p− p−(δij − δi+1,j )

{0, 1, 1} −p− p−(δij − δi−1,j )

{1, 0, 1} 1 p+(δij − δi−1,j ) + p−(δij − δi−1,j )

{1, 1, 0} −p+ p+(δij − δi+1,j )

{1, 1, 1} 0 0

and, in general, K(n) ∼ O(�1−n). With these orderings in �, a limit theorem due to Kurtz
[23–25] states that, as � → ∞, the solution of the master equation (2) is approximated, with
an error of order ln �/�, by that of the Langevin equation [23],

dni

dτ
= K

(1)
i (N) + ηi (8)

with Gaussian noises ηi that have zero mean, 〈ηi(τ )〉 = 0, and covariances

〈ηi(τ )ηj (τ
′)〉 = K

(2)
ij (N)δ(τ − τ ′). (9)

For the transition rates in (3), these moments can be written as

K
(1)
i (N) = 1

2�2ni + (p+ − p−)
(
ni − 1

2

)
(�−ni + �+ni) (10)

and

K
(2)
ij (N) = (

ni − 1
2

)
�2(niδij ) − (

ni − 1
2

)
δij�

2ni − 1
2ni�

2δij

+ 1
2 (p+ − p−)[(�+ni)(�

+δij ) − (�−ni)(�
−δij )] (11)

where �−ni = ni − ni−1,�
+ni = ni+1 − ni , �2ni = ni−1 − 2ni + ni+1, and these operators

act only on the first index of δij . The first three terms on the right-hand side of (11) account
for exclusion, while the last term accounts for hopping bias.

The moments in (10) and (11) for each local configuration of a site i and its nearest
neighbours i ± 1 are compiled in table 1. The hopping bias and the exclusion are both evident
in the variation of these moments with the local configuration. The coupling between nearest
neighbour sites in the second moment enforces particle conservation in that a change of the
occupation on a site results in compensating changes on nearest neighbouring sites, insofar as
exclusion allows. One of the key points to be discussed below is how the different terms in
(11) transform under coarse-graining.

The continuum equation of motion corresponding to (8) and (9) is obtained by
first introducing coarse-grained space and time variables through the diffusive scaling
transformation, x = εi and t = ε2τ , where ε > 0 parametrizes the extent of the coarse-
graining. The corresponding transformation of the occupation numbers is ni(τ ) = ϕ(εi, ε2τ ),
where ϕ is an analytic function in both arguments. With these transformations, the leading-
order terms in K(1) are

K(1)(ϕ) = ε2

2

∂2ϕ

∂x2
+

ε4

4!

∂4ϕ

∂x4
+ · · · + 2ε(p+ − p−)

(
ϕ − 1

2

) (
∂ϕ

∂x
+

1

3!

∂3ϕ

∂x3
+ · · ·

)
. (12)
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By requiring that p− − p+ = ε, in which case ε → 0 also corresponds to the weakly
asymmetric limit, we obtain

K(1)(ϕ) = ε2

2

∂2ϕ

∂x2
− 2ε2

(
ϕ − 1

2

)
∂ϕ

∂x
+ O(ε4). (13)

For K(2), the coarse-graining transformations, together with the identifications

δij = εδ(x − x ′) δ(τ − τ ′) = ε2δ(t − t ′) (14)

yield

K(2)(ϕ)δ(τ − τ ′) = ε5 ∂

∂x

{
ϕ(ϕ − 1)

[
d

dx
δ(x − x ′)

]}
δ(t − t ′) + O(ε7) (15)

which, according to (9), imply a coarse-grained noise ηi(τ ) = ε5/2η(x, t). The terms of
order ε5 are derived from the first three terms on the right-hand side of (11) and are therefore
associated only with exclusion. The remaining term, contained in the ε7 corrections, accounts
for hopping bias. Thus, as ε → 0, the importance of hopping bias on the fluctuations
diminishes more rapidly than that of exclusion. By substituting these transformations into (8)
and taking the limit ε → 0, we obtain the deterministic equation

∂ϕ

∂t
= 1

2

∂2ϕ

∂x2
− 2

(
ϕ − 1

2

)
∂ϕ

∂x
. (16)

The transformation

ϕ(x, t) = 1
2 + 1

4u
(
x, 1

2 t
)

(17)

yields Burgers’ equation (1) for u.
The comparison of solutions of the master equation (2), as exemplified by lattice

simulations, with a standard solution of (16) [26] (cf (17)),

ϕ(x, t) = 1

2
− sinh x

2(cosh x + e−t/2)
(18)

is shown in figure 1. This solution is considered over the spatial interval −80 � x � 80 and
compared to stochastic lattice gas simulations with 100,250 and 1000 sites at t = −60,−40, 0.
The simulations are initialized by averaging over individual realizations with site occupation
probabilities determined by (18) at t = −60. Since, for this solution, u → 0 as x → ∞ and
u → 1 as x → −∞, we impose a source of particles at the left boundary (x = −80) and a
sink at the right boundary (x = 80). Each simulation was averaged over 8000 independent
realizations.

As time increases from t = −60, the plateau near the origin of (18) disappears and a
‘shock’ front is formed. The simulations show the same qualitative behaviour, but the details
of the profile are faithfully reproduced only by the larger system sizes, i.e. those corresponding
to smaller ε. For 100 sites, the sharpness of the features in the Burgers solution is smeared
out and there is an appreciable broadening of the shock front at t = 0. For 1000 sites, the
simulations show only a slight deviation at the shock front at t = 0; simulations with a
somewhat larger number of sites are essentially indistinguishable from the Burgers solution.
Thus, the continuum limit of the biased random walk of particles with exclusion does indeed
approach the solution of Burgers’ equation, in agreement with the passage from (10) and (11)
to (16).

The differences between the simulations and solution (18) can be explained by the lattice
corrections to (16). In the spirit of the central limit theorem, we write

ni(τ ) = ϕ(εi, ε2τ ) + ε1/2ξ(εi, ε2τ ) (19)
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Figure 1. Comparison of solution (18) of equation (16) (solid line) with simulations of
the asymmetric exclusion process (full symbols) for lattices of sizes L = 100, 250, 1000,
corresponding to ε = 1.6, 0.64, 0.16, respectively, at times t = −60, −40, 0. In each panel,
the abscissa indicates the range of the spatial variable (−80 � x � 80) and the ordinate the range
of the solution (0 � ϕ � 1).

substitute into (10) and (11), and collect terms proportional to ε5/2 to obtain the equation of
motion for the lattice correction ξ ,

∂ξ

∂t
= 1

2

∂2ξ

∂x2
− 2

∂

∂x
(ϕξ) +

∂ξ

∂x
+ η (20)

where the noise has zero mean and covariance

〈η(x, t)η(x ′, t ′)〉 = ∂

∂x

{
ϕ(ϕ − 1)

[
d

dx
δ(x − x ′)

]}
δ(t − t ′). (21)

As discussed above, this noise accounts only for the exclusion rule, the hopping bias being
a higher order effect. The structure of (10) and (11) means that the differential equation for
the ξ is linear with coefficients determined by ϕ. In other words, the fluctuations ‘follow’ the
deterministic solution.

A complete characterization of ξ(x, t) would require the solution of (20) and (21). We
will focus instead on some general features, beginning with the average 〈ξ(x, t)〉. Since the η

have zero mean and ϕ is a deterministic quantity, the equation for 〈ξ〉 is

∂〈ξ〉
∂t

= 1

2

∂2〈ξ〉
∂x2

− 2
∂

∂x
(ϕ〈ξ〉) +

∂〈ξ〉
∂x

. (22)

The initial condition on the total solution is determined by ϕ, so (19) indicates that
〈ξ(x, 0)〉 = 0. Moreover, since the boundary conditions at x = ±80 are also subsumed
by the deterministic part of the solution, we must have that 〈ξ(−80, t)〉 = 〈ξ(80, t)〉 = 0.
Thus, the solution to (22) vanishes identically: 〈ξ(x, t)〉 = 0.
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Returning to (20), we first observe that, as x → ±∞, the noise covariance in (21)
vanishes, so limx→±∞ ξ(x, t) = 0, as follows from the solution of (22). This is precisely
what one would expect from simulations, since, as x → −∞, all sites are occupied (ϕ → 1),
while, as x → ∞, all sites are empty (ϕ → 0). In both cases, the transition rates in (3)
vanish. Alternatively, according to (21), in regions where ϕ deviates significantly from these
asymptotic values, the noise asserts its strongest influence, as is indeed observed in figure 1.

To summarize, we have obtained an exact equation of motion for the biased random
walk with exclusion on finite lattices. The corresponding continuum equation, obtained from
a coarse-graining transformation with diffusive scaling in the weakly asymmetric limit, is
Burgers’ equation. The leading lattice corrections describe the fluctuations in the simulations
of this lattice gas. The considerations leading to these equations of motion apply to a large
class of driven lattice systems, even those with non-analytic transition rules, such as growth
models [27–29] and sandpile models [30]. These applications are being explored further for
several models.
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